Manifold Regularized Slow Feature Analysis for Dynamic Texture Recognition

نویسندگان

  • Jie Miao
  • Xiangmin Xu
  • Xiaofen Xing
  • Dacheng Tao
چکیده

Dynamic textures exist in various forms, e.g., fire, smoke, and traffic jams, but recognizing dynamic texture is challenging due to the complex temporal variations. In this paper, we present a novel approach stemmed from slow feature analysis (SFA) for dynamic texture recognition. SFA extracts slowly varying features from fast varying signals. Fortunately, SFA is capable to leach invariant representations from dynamic textures. However, complex temporal variations require highlevel semantic representations to fully achieve temporal slowness, and thus it is impractical to learn a high-level representation from dynamic textures directly by SFA. In order to learn a robust low-level feature to resolve the complexity of dynamic textures, we propose manifold regularized SFA (MR-SFA) by exploring the neighbor relationship of the initial state of each temporal transition and retaining the locality of their variations. Therefore, the learned features are not only slowly varying, but also partly predictable. MR-SFA for dynamic texture recognition is proposed in the following steps: 1) learning feature extraction functions as convolution filters by MR-SFA, 2) extracting local features by convolution and pooling, and 3) employing Fisher vectors to form a video-level representation for classification. Experimental results on dynamic texture and dynamic scene recognition datasets validate the effectiveness of the proposed approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding

In computer vision and pattern recognition researches, the studied objects are often characterized by multiple feature representations with high dimensionality, thus it is essential to encode that multiview feature into a unified and discriminative embedding that is optimal for a given task. To address this challenge, this paper proposes an ensemble manifold regularized sparse low-rank approxim...

متن کامل

Graph based manifold regularized deep neural networks for automatic speech recognition

Deep neural networks (DNNs) have been successfully applied to a wide variety of acoustic modeling tasks in recent years. These include the applications of DNNs either in a discriminative feature extraction or in a hybrid acoustic modeling scenario. Despite the rapid progress in this area, a number of challenges remain in training DNNs. This paper presents an effective way of training DNNs using...

متن کامل

Face Recognition using an Affine Sparse Coding approach

Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...

متن کامل

Thermo-mechanical high-cycle fatigue analysis of exhaust manifold of turbocharged engine with two-way coupling FSI

NNowadays, car manufactures in order to increasing torque and power with consider to fuel consumption, have swept to production of turbocharged engines. With consider to exhaust gas-temperature rises in boosted engines, recognition of critical locations of exhaust manifold in the worse condition of engine (full load and maximum speed), to prevent fracture of exhaust manifold is very important. ...

متن کامل

Dynamic Local Feature Analysis for Face Recognition

This paper introduces an innovative method, Dynamic Local Feature Analysis (DLFA), for human face recognition. In our proposed method, the face shape and the facial texture information are combined together by using the Local Feature Analysis (LFA) technique. The shape information is obtained by using our proposed adaptive edge detecting method that can reduce the effect on different lighting c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1706.03015  شماره 

صفحات  -

تاریخ انتشار 2017